lunes, 2 de junio de 2014

COQUILLA

Las coquillas son moldes metálicos permanentes (normalmente de acero o fundición gris) que, al contrario que el método de moldeo con arena, permite obtener un número muy elevado de piezas iguales utilizando el mismo molde. Las coquillas son mucho más caras que los moldes de arena, pero resulta rentable si se fabrican con ellas un número elevado de piezas (hasta miles). Presenta otra ventaja, al ser el molde metálico, la velocidad a la que se enfría la pieza es mayor. Demás, la precisión de la piezas obtenidas es mayor.

El proceso de fabricación por coquilla es el siguiente:
•Se precalienta la coquilla, que normalmente consta dedos partes.
• Se vierte el metal y se llena la cavidad.
• Se deja enfriar el contenido hasta que se solidifique.
• Se abre el molde y se extrae la pieza.

3. Colada por cera perdida

Se emplea para fabricar objetos artísticos o de forma muy compleja y pequeña. El procedimiento es el siguiente:

•Se crea un modelo de cera.
•Se cubre el modelo con arena especial o yeso, dejándolos orificios pertinentes para el llenado del metal y para la salida de los gases.
•Se deja secar el molde para que adquiera la forma del modelo.
Se calienta el molde y se derrite la cera que se retira.

•Se llena el molde del metal y se extrae la pieza rompiendo el molde.




COLADA EN COQUILLA

COLADA EN  COQUILLA





Todos los objetos que encontramos y utilizamos diariamente, como pueden ser los automóviles, los muebles, los electrodomésticos, los libros, etc., no se encuentran en la naturaleza, sino que han sido creados por el hombre, partiendo de materias primas de la propia naturaleza ya que, por medio de diversos procesos de fabricación, se les ha dado la forma apropiada para conseguir cubrir una necesidad o aumentar el bienestar humano. Para fabricar un elemento, además de realizar un diseño previo en el que se especifiquen dimensiones y materiales, es necesario elegir el procedimiento de fabricación más idóneo, con el fin de dar forma al material. En este bloque veremos las técnicas de fabricación más usuales, que agruparemos en tres grupos. 
       
Procedimiento de fabricación por deformación o moldeo.

Procedimiento de fabricación por separación y corte.

Procedimiento de fabricación mediante unión de piezas

Al primer caso también se le denomina procedimiento de conformación (conformar es dar forma) sin pérdida de material, ya que a lo largo de los procesos no se desperdicia ni se pierde parte alguna del material con el que se trabaja.
Al segundo caso también se le denomina procedimiento de conformación con pérdida de material, ya que a lo largo de los procesos se desperdicia o pierde alguna parte del material con el que se trabaja.




http://iesvillalbahervastecnologia.files.wordpress.com/2009/03/tecnicas-de-moldeo.pdf

PROCESO DE FUNDICIÓN DE MOLDEADO EN VERDE

PROCESO DE FUNDICIÓN DE MOLDEADO EN VERDE


El Término "arena verde" es conocido principalmente por el contenido de humedad dentro de la arena. La arena se somete a un “moldeado / mezclado”, proceso en el que varios tipos de arcilla y aditivos químicos que actúan como aglutinantes se mezclan con la arena, el resultado es un compuesto que es conveniente para el proceso de modeo en arena.

Esta mezcla de preparado de arena se comprime alrededor del patrón (patrón de la pieza deseada) a presiones y temperaturas específicas, para garantizar que mantenga su forma durante el resto del proceso de fundición. La arena mezclada se compacta alrededor del patrón, tomando la forma delmoldedeseado.

A veces el diseño de la fundición implica conductos internos en la pieza. Esto se hace mediante el uso de machos de arena que están constituidos por una mezcla de arenas similares. Los núcleos están ubicados estratégicamente para formar los conductos necesarios en la fundición. Las dos mitades del molde posteriormente se cierran y el metal se vierte en la cavidad y se deja solidificar.

Después de que la solidificación haya tenido lugar, la arena se hace vibrar hasta que se libera de la fundición. El proceso de acabado puede ser completado por rectificado, mecanizado, la galvanoplastia y la pintura.


http://es.wikipedia.org/wiki/Moldeo_en_arena_verde
http://iesvillalbahervastecnologia.files.wordpress.com/2009/03/tecnicas-de-moldeo.pdf

ACABADO DE LA SUPERFICIE DE LAS PIEZAS

La precisión de la pieza fundida está limitada por el tipo de arena y el proceso de moldeo utilizado. La fundición hecha con arena verde gruesa proporcionará una textura áspera en la superficie de la pieza. Sin embargo, el moldeo con arena seca produce piezas con superficies mucho más lisas.
Para un mejor ACABADO DE LA SUPERFICIE DE LAS PIEZAS, estas pueden ser pulidas o recubiertas con un residuo de óxidos, silicatos y otros compuestos que posteriormente se eliminarían mediante distintos procesos, entre ellos el granallado.
  • Moldeo en arena verde. La arena verde es una mezcla de arena de sílice, arcilla, humedad y otros aditivos. Este moldeo consiste en la elaboración del molde con arena húmeda y colada directa del metal fundido. Es el método más empleado en la actualidad, con todo tipo de metales, y para piezas de tamaño pequeño y medio.
No es adecuado para piezas grandes o de geometrías complejas, ni para obtener buenos acabados superficiales o tolerancias reducida.
  • Moldeo en arena químico. Consiste en la elaboración del molde con arena preparada con una mezcla de resinas, el fraguado de estas resinas puede ser por un tercer componente líquido o gaseoso, o por auto fraguado. De este modo se incrementa la rigidez del molde, lo que permite fundir piezas de mayor tamaño y mejor acabado superficial.
  • Moldeo en arena seca. La arena seca es una mezcla de arena de sílice seca, fijada con otros materiales que no sea la arcilla usando adhesivos de curado rápido. Antes de la colada, el molde se seca a elevada temperatura (entre 200 y 300°C). De este modo se incrementa la rigidez del molde, lo que permite fundir piezas de mayor tamaño, geometrías más complejas y con mayor precisión dimensional y mejor acabado superficial.
  • Moldeo mecánico. Consiste en la automatización del moldeo en arena verde. La generación del molde mediante prensas mecánicas o hidráulicas, permite obtener moldes densos y resistentes que subsanan las deficiencias del moldeo tradicional en arena verde. Se distingue:
  • Moldeo Horizontal. A finales de los años 50 los sistemas de pistones alimentados hidráulicamente fueron usados para la compactación de la arena en los moldes. Estos métodos proporcionaban mayor estabilidad y precisión en los moldes. A finales de los años '60 se desarrolló la compactación de los moldes con aire a presión lanzado sobre el molde de arena pre compactado.
La mayor desventaja de estos sistemas es la gran cantidad de piezas de repuesto que se consumen debido a la multitud de partes móviles, además de la producción limitada unos 90-120 moldes por hora.
  • Moldeo vertical. En 1962 la compañía danesa Dansk Industri Syndikat (DISA) implementó una ingeniosa idea de moldeo sin caja aplicando verticalmente presión. Las primeras líneas de este tipo podrían producir 240 moldes por hora y hoy en día las más modernas llegan a unos 550 moldes por hora. Aparte de la alta productividad, de los bajos requerimientos de mano de obra y de las precisiones en las dimensiones, este método es muy eficiente.
  • Moldeo en arena “matchplate”. Este método fue desarrollado y patentado en 1910. Sin embargo, no fue hasta principio de los años '60 cuando la compañía americana Hunter Automated Machinery Corporation lanzó su primera línea basada en esta tecnología. El método es similar al método vertical. El principal proveedor es DISA y actualmente este método es ampliamente utilizado, particularmente en Estados Unidos, China y la India. Una gran ventaja es el bajo precio de los modelos, facilidad para cambiar las piezas de los moldes y además, la idoneidad para la fabricación de series cortas de piezas en la fundición.
  • Moldeo a la cera perdida o micro fusión. En este caso, el modelo se fabrica en cera o plástico. Una vez obtenido, se recubre de una serie de dos capas, la primera de un material que garantice un buen acabado superficial, y la segunda de un material refractario que proporciones rigidez al conjunto. Una vez que se ha completado el molde, se calienta para endurecer el recubrimiento y derretir la cera o el plástico para extraerla del molde en el que se verterá posteriormente el metal fundido.
  • Fundición en coquilla. En este caso, el molde es metálico.
  • Fundición por inyección
  • Fundición prensada
  • Fundición a baja presión

Es un sistema de fundición que consiste colocar un crisol de metal fundido en un recipiente a presión. Un tubo de alimentación conecta el metal de crisol con la entrada del molde. Se inyecta aire comprimido o un gas inerte en el recipiente a una presión de 20-105 kN/m². Al inyectarlo la única salida del metal será el tubo por lo que se genera el flujo de metal, que llena la matriz y forma la pieza. La presión se mantiene durante la solidificación para compensar la contracción volumétrica. No son necesarias ni mazarotas ni alimentación de colada.




COLADA EN MOLDES DE ARENA

COLADA EN MOLDES DE ARENA




El proceso más común es la fundición en arena, por ser ésta un material refractario muy abundante en la naturaleza y que, mezclada con arcilla, adquiere cohesión y moldeabilidad sin perder la permeabilidad que posibilita evacuar los gases del molde al tiempo que se vierte el metal fundido. La fundición en arena consiste en colar un metal fundido, típicamente aleaciones de hierro, acero, bronce, latón y otros, en un molde de arena, dejarlo solidificar y posteriormente romper el molde para extraer la pieza fundida.

Para la fundición con metales como el hierro o el plomo, que son significativamente más pesados que el molde de arena, la caja de moldeo es a menudo cubierta con una chapa gruesa para prevenir un problema conocido como "flotación del molde", que ocurre cuando la presión del metal empuja la arena por encima de la cavidad del molde, causando que el proceso no se lleve a cabo de forma satisfactoria.

Diseño del modelo

La fundición en arena requiere un modelo a tamaño natural de madera, cristal, plástico y metales que define la forma externa de la pieza que se pretende reproducir y que formará la cavidad interna en el molde.
En lo que atañe a los materiales empleados para la construcción del modelo, se puede emplear desde madera o plásticos como el uretano y el poliestireno expandido (EPS) hasta metales como el aluminio o el hierro fundido.
Para el diseño del modelo se debe tener en cuenta una serie de medidas derivadas de la naturaleza del proceso de fundición:
  • Debe ser ligeramente más grande que la pieza final, ya que se debe tener en cuenta la contracción de la misma una vez se haya enfriado a temperatura ambiente. El porcentaje de reducción depende del material empleado para la fundición.
A esta dimensión se debe dar una sobre medida en los casos en el que se dé un proceso adicional de maquinado o acabado por arranque de viruta.
  • Las superficies del modelo deberán respetar unos ángulos mínimos con la dirección de desmoldeo (la dirección en la que se extraerá el modelo), con objeto de no dañar el molde de arena durante su extracción. Este ángulo se denomina ángulo de salida. Se recomiendan ángulos entre 0,5º y 2º.
  • Incluir todos los canales de alimentación y mazarotas necesarios para el llenado del molde con el metal fundido.
  • Si es necesario incluirá portadas, que son prolongaciones que sirven para la colocación del macho.
Los moldes, generalmente, se encuentran divididos en dos partes, la parte superior denominada cope y la parte inferior denominada draga que se corresponden a sendas partes del molde que es necesario fabricar. Los moldes se pueden distinguir:
  • Moldes de arena verde: estos moldes contienen arena húmeda.
  • Moldes de arena fría: usa aglutinantes orgánicos e inorgánicos para fortalecer el molde. Estos moldes no son cocidos en hornos y tienen como ventaja que son más precisos dimensionalmente pero también más caros que los moldes de arena verde.
  • Moldes no horneados: estos moldes no necesitan ser cocidos debido a sus aglutinantes (mezcla de arena y resina). Las aleaciones metálicas que típicamente se utilizan con estos moldes son el latón, el hierro y el aluminio.
Las etapas que se diferencian en la fabricación de una pieza metálica por fundición en arena comprende:
  • Compactación de la arena alrededor del modelo en la caja de moldeo. Para ello primeramente se coloca cada semimodelo en una tabla, dando lugar a las llamadas tablas modelo, que garantizan que posteriormente ambas partes del molde encajarán perfectamente.
Actualmente se realiza el llamado moldeo mecánico, consistente en la compactación de la arena por medios automáticos, generalmente mediante pistones (uno o varios) hidráulicos o neumáticos.
  • Colocación del macho o corazones. Si la pieza que se quiere fabricar es hueca, será necesario disponer machos, también llamados corazones que eviten que el metal fundido rellene dichas oquedades. Los machos se elaboran con arenas especiales debido a que deben ser más resistentes que el molde, ya que es necesario manipularlos para su colocación en el molde. Una vez colocado, se juntan ambas caras del molde y se sujetan. Siempre que sea posible, se debe prescindir del uso de estos corazones ya que aumentan el tiempo para la fabricación de una pieza y también su coste.
  • Colada. Vertido del material fundido. La entrada del metal fundido hacia la cavidad del molde se realiza a través de la copa o bebedero de colada y varios canales de alimentación. Estos serán eliminados una vez solidifique la pieza. Los gases y vapores generados durante el proceso son eliminados a través de la arena permeable.
  • Enfriamiento y solidificación. Esta etapa es crítica de todo el proceso, ya que un enfriamiento excesivamente rápido puede provocar tensiones mecánicas en la pieza, e incluso la aparición de grietas, mientras que si es demasiado lento disminuye la productividad. Además un enfriamiento desigual provoca diferencias de dureza en la pieza. Para controlar la solidificación de la estructura metálica, es posible localizar placas metálicas enfriadas en el molde. También se puede utilizar estas placas metálicas para promover una solidificación direccional. Además, para aumentar la dureza de la pieza que se va a fabricar se pueden aplicar tratamientos térmicos o tratamientos de compresión.
  • Desmolde. Rotura del molde y extracción de la pieza. En el desmolde también debe retirarse la arena del macho. Toda esta arena se recicla para la construcción de nuevos moldes.
  • Desbarbado. Consiste en la eliminación de los conductos de alimentación, mazarota y rebarbas procedentes de la junta de ambas caras del molde.
  • Acabado y limpieza de los restos de arena adheridos. Posteriormente la pieza puede requerir mecanizado, tratamiento térmico.1



HORNO DE INDUCCIÓN

HORNO  DE INDUCCIÓN


Un Horno de inducción es un horno eléctrico en el que el calor es generado por calentamiento, por la inducción eléctrica de un medio conductivo (un metal) en un crisol, alrededor del cual se encuentran enrolladas bobinas magnéticas.
El principio de calentamiento de un metal por medio de la inducción fue descubierto por Michael Faraday en 1831 mientras se encontraba experimentando en su laboratorio.1
Una ventaja del horno de inducción es que es limpio, eficiente desde el punto de vista energético, y es un proceso de fundición y de tratamiento de metales más controlable que con la mayoría de los demás modos de calentamiento. Otra de sus ventajas es la capacidad para generar una gran cantidad de calor de manera rápida. Los principales componentes de un sistema de calentamiento por inducción son: el cuerpo de bobinas , conformado por las bobinas de fuerza (donde como están dispuestas físicamente es donde hay mayor agitación del baño líquido) y por las bobinas de refrigeración , la fuente de alimentación, la etapa de acoplamiento de la carga, una estación de enfriamiento, el material refractario que protege a las bobinas del baño líquido y la pieza a ser tratada.1
Las fundiciones más modernas utilizan este tipo de horno y cada vez más fundiciones están sustituyendo los altos hornos por los de inducción, debido a que aquellos generaban mucho polvo entre otros contaminantes. El rango de capacidades de los hornos de inducción abarca desde menos de un kilogramo hasta cien toneladas y son utilizados para fundir hierro y acero, cobre, aluminio y metales preciosos. Uno de los principales inconvenientes de estos hornos es la imposibilidad de refinamiento; la carga de materiales ha de estar libre de productos oxidantes y ser de una composición conocida y algunas aleaciones pueden perderse debido a la oxidación (y deben ser re-añadidos).
El rango de frecuencias de operación va desde la frecuencia de red (50 ó 60 Hz) hasta los 10 kHz, en función del metal que se quiere fundir, la capacidad del horno y la velocidad de fundición deseada - normalmente un horno de frecuencia elevada (más de 3000 Hz) es más rápido, siendo utilizados generalmente en la fundición de aceros, dado que la elevada frecuencia disminuye la turbulencia y evita la oxidación. Frecuencias menores generan más turbulencias en el metal, reduciendo la potencia que puede aplicarse al metal fundido.
En la actualidad los hornos de frecuencia de línea (50 ó 60 Hz, según país) han quedado en desuso, ya que los mismos poseían muy poca eficiencia energética y además cargaban con un alto coste de mantenimiento, dado que contenían una gran cantidad de elementos electromecánicos. En las últimas décadas (aproximadamente desde finales de la década de 1970) se han incorporado equipos de estado sólido, conformados en su etapa de potencia con componentes tales como tiristores (diodos SCR) y transistores de potencia tipo IGBT, con lo que el rendimiento y eficiencia de estos equipos ha aumentado considerablemente.

Un horno para una tonelada precalentado puede fundir una carga fría en menos de una hora. En la práctica se considera que se necesitan 600 kW para fundir una tonelada de hierro en una hora.




http://www.efd-induction.com/es/Applications/Melting/Metal_Foundry.aspx

PROCESO DE FUSION DEL HIERRO EN HORNO DE INDUCCION

PROCESO DE FUSIÓN DEL HIERRO EN HORNO DE INDUCCIÓN


Fusión por inducción

Fusión por inducción

El calentamiento por inducción es una forma inteligente y reconocida de fundir metales y vidrio. EFD Induction ha desarrollado soluciones para una gran variedad de situaciones, tales como metales preciosos, fusión en horno basculante, fusión a la cera perdida y aplicaciones de laboratorio.

Con un horno de inducción, el proceso resulta mucho más limpio que con uno tradicional. Lo que implica que no sea necesaria la purificación después de la fusión, permitiendo eliminar uno de los pasos en el proceso de producción. Menores costes de mantenimiento y de inventario de máquinas son sólo dos de los muchos beneficios.

La inducción es también más segura y tiene una mejor relación coste/eficacia. No hay llama que conduzca a pérdidas sustanciales de calor o que aumente el peligro de lesiones laborales o incendios.

Además, el calor de inducción es preciso y repetible, algo importante para garantizar la calidad de los procesos de fusión.





Tomado de: http://www.efd-induction.com/es/Applications/Melting.aspx


SOLDADURA

BIBLIOGRAFÍA 





SOLDABILIDAD

SOLDABILIDAD

Un material se considera soldable, por un procedimiento determinado y para una aplicación específica, cuando mediante una técnica adecuada se puede conseguir una soldadura sana de tal forma que cumpla con las exigencias prescritas con respecto a sus propiedades y a su influencia en la construcción de la que forma par La soldabilidad de un material valora su aptitud para ser soldado

 En un proceso de soldeo por fusión se pueden distinguir tres zonas claras en la unión soldada (ver figura 1):

· Metal de soldadura, o cordón de soldadura, que es la zona formada por el metal base y el metal de aportación que han sido fundidos.

· Zona afectada térmicamente (ZAT), es la zona adyacente a la soldadura que se calienta en gran medida y se ve afectada por el calor, pero que no funde. Esta zona sufre cambios metalúrgicos y cambios En sus características mecánicas, pudiendo ser muy propensa a desarrollar grietas o condiciones desfavorables. En general es deseable una ZAT estrecha.


· Metal base que no ha sufrido ninguna transformación en el proceso de soldeo. 




ZONA AFECTADA POR EL CALOR

ZONA AFECTADA POR EL CALOR


(También llamada HAZ) es el volumen de material en o cerca de la soldadura, cuyas propiedades han sido alteradas debido al calor de la soldadura. Debido a que el proceso de soldado por resistencia se basa en calentar dos piezas, es inevitable que haya una HAZ . El material que se encuentra dentro de la HAZ sufre un cambio que puede o no resultar beneficioso para la unión soldada. En general, el objetivo de un buen soldado por resistencia es minimizar la HAZ.

PRECALENTAMIENTO

El precalentamiento es usado por una de las siguientes razones:

1)    para reducir esfuerzos de encogimiento en la soldadura y metal base adyacente.
2)    Para proveer una rata de enfriamiento más lenta a través del rango de temperaturas criticas (cerca de 1.600 º F a 1330º F), previniendo endurecimiento excesivo y baja de ductilidad de la soldadura y la zona de metal base afectada por el calor.
3)    Para proveer una rata de enfriamiento más lenta a través del rango de temperatura cercano a 400º F, permitiendo mayor tiempo para que el hidrógeno presente, se difunda a través de la soldadura y zonas adyacentes y no produzca grietas internas.

Estos puntos anteriores dependen de factores tales como el análisis químico de los metales base, del grado de restricción de la junta, de las propiedades mecánicas a elevadas temperaturas y de que tan gruesos sean los materiales a soldar.
La temperatura se puede conseguir por medio de resistencias eléctricas, inducción eléctrica o por quemador de gas propano. Se prohíbe usar quemadores de oxiacetileno para precalentar, para evitar contaminación del metal base. El área de precalentamiento  debe ser por lo menos 3 veces la parte más ancha de la ranura que se va a soldar. La temperatura de precalentamiento usada debe chequearse haciendo mediciones cercanas a la soldadura, por medios tales como tizas, termocuplas, etc.   

PRE-CALENTAMIENTO Y POS-CALENTAMIENTO DE LA SOLDADURA
El pre-calentamiento puede ser definido como la aplicación de calor a un metal base o sustrato, antes de la respectiva soldadura. Los sopletes de gas, calentadores eléctricos, o calentadores de paneles radiantes infrarrojos pueden ser utilizados para realizar el pre-calentamiento, lo cual reduce la velocidad de enfriamiento de soldadura y por tanto evita el agrietamiento en frío de las soldaduras. La Fig.1 muestra cómo un incremento en la temperatura de pre-calentamiento afecta al índice de enfriamiento de las soldaduras. Por ejemplo, cuando la entrada de calor es constante (por ejemplo, 20 kJ/cm), un pre-calentamiento de 50ºC resulta en un índice de enfriamiento de aproximadamente 17ºC/seg., mientras que un pre-calentamiento de 250°C reduce la velocidad a aproximadamente 3°C/seg. Disminuir los índices de enfriamiento previene la formación de estructuras quebradizas de soldadura, y retira el hidrógeno difusible, lo cual a su vez impide la aparición de grietas en frío en las soldaduras.



Fig. 1. El efecto del pre-calentamiento sobre el índice de enfriamiento de las soldaduras en función de la entrada de calor (Espesor de la placa: 19mm)
La Fig. 2 muestra la dependencia de la temperatura de pre-calentamiento en el agrietamiento en frío, en una MPa 780 de acero con alta resistencia a la tensión. A medida que la temperatura del pre-calentamiento aumenta, el índice de agrietamiento disminuye.



Figura 2. Resultados de la prueba de agrietamiento a una soldadura de ranura “y” de una MPa 780 de acero con alta resistencia a la tensión.
El post-calentamiento se puede definir como la aplicación de calor a un ensamblado después de la respectiva soldadura. El post-calentamiento incluye tratamiento térmico posterior a la soldadura (PWHT), calentamiento inmediatamente posterior a la soldadura (IPWH), normalización, enfriamiento rápido, y revenido (envejecimiento). Los propósitos principales de estas operaciones en la fabricación de soldadura son los siguientes:
■PWHT: Aliviar las tensiones residuales
■IPWH: Aliviar el hidrógeno difusible
■ Normalización: Refina microestructuras deformadas por causa del moldeo en caliente (por ejemplo es aplicada en la placa terminal de los recipientes)
■ Enfriamiento rápido: Endurece soldaduras por enfriamiento rápido, utilizando agua, aire, o niebla  (por ejemplo, es aplicado en ejes alisados)
■ Revenido (Envejecimiento): Estabiliza microestructuras después del enfriamiento rápido o soldadura
Entre todos estos tratamientos de calor o calentamiento, PWHT e IPWH son los procedimientos más comunes en la soldadura. Los otros son utilizados para aplicaciones limitadas a algunos campos de la soldadura de fabricación. Los propósitos y procedimientos del PWHT se detallan en Kobelco Welding Today, Vol. 4, Nº 2, abril del año 2001. El IPWH usualmente se lleva a cabo con sopletes de gas en soldaduras, inmediatamente después de que haya culminado su soldadura mientras que la soldadura aún conserva su temperatura de pre-calentamiento, mediante el uso de temperaturas relativamente más bajas y de tiempos más cortos de calentamiento (250-350 °C x 0,5-1h), previamente al PWHT. El IPWH disminuye el hidrógeno difusible a un nivel adecuado (aunque mayor que con el PWHT como se muestra en la Fig. 3) para evitar el agrietamiento en frío.

    

METALURGIA DE LA SOLDADURA

TIPOS DE JUNTAS


La soldadura es el proceso de unir dos o más objetos utilizando altos niveles de calor. Un material de relleno, llamado soldadura, es añadido para formar una sustancia líquida fundida en el área en que se encuentran los objetos que se desea unir. Ésta área es llamada junta, o junta soldada. Cuando se quita la fuente de calor, el metal se enfría rápidamente para formar una unión sólida. La soldadura se utiliza en construcción, manufactura y otras aplicaciones industriales, para unir materiales como hierro u acero.





Junta a tope
La junta a tope es el tipo más simple de junta soldada. Se utiliza para unir dos objetos que reposan sobre el mismo plano. La junta entre los dos objetos puede consistir en dos bordes cuadrados, en forma de "V" o de "U". El perfil depende de los materiales que serán soldados, y también puede depender de la aplicación que se le desea dar a esos materiales. Todas las juntas a tope pueden consistir en una soldadura simple o doble, siendo las soldaduras simples las que tienen una mejor relación costo-beneficio.
Soldadura de esquinas
La soldadura de esquinas se usa para unir dos objetos en un ángulo de 90 grados. Los objetos se colocan de manera tal de que sólo se toquen sobre un borde. Ésto deja un surco en forma de "V" que debe ser rellenado con material de soldadura. Utilizar esta soldadura en "V" permite una unión mucho más fuerte, y también permite al soldador unir los objetos en un solo paso. Si los objetos fueron acomodados de una manera distinta, la unión puede requerir de dos soldaduras separadas (en la parte superior e inferior) y podría no resultar tan fuerte.
Juntas de borde
Una junta de borde es similar a una junta a tope, pero se usa sobre los bordes de dos objetos de distribución vertical. Por ejemplo, esta junta se utiliza comúnmente para crear una chapa doble de acero. Las chapas se apilan una sobre la otra, y al menos un borde se suelda mediante este método. Para añadir fuerza a la unión, deben soldarse dos o más bordes.
Juntas solapadas
Las juntas solapadas se usan para superponer dos objetos que no reposan directamente uno sobre el otro. Como sólo una pequeña porción de los objetos se superpone, una junta de bordes no es suficiente. En su lugar, se sueldan las juntas donde el borde de uno de los objetos toca al otro. Por ejemplo, imagínate una escalera, con los peldaños representando una serie de objetos metálicos. Una junta solapada se colocaría en la intersección de cada objeto vertical con el escalón horizontal.
Soldadura en "T"
Las soldaduras en "T" se utilizan para unir dos objetos en el ángulo adecuado para formar una forma de "T". Un ejemplo simple sería una viga de metal suspendida de un cielorraso. La soldadura puede realizarse en uno de los dos lados de la viga, donde ésta se une con la cubierta del techo. Si el objeto metálico estuviera colocado por encima del techo en un formación de tipo cruz, el resultado de la soldadura sería lo que se conoce como una junta en forma de cruz.
TIPOS UNIONES
Se llama soldadura a la unión de dos piezas metálicas de igual o parecida composición, de forma que la unión quede rígida y estanca. Esto se consigue bien por el efecto de fusión que proporciona la aportación de calor, bien por la aportación de otro metal de enlace o por la combinación de ambos efectos.
Existen cerca de cuarenta sistemas de soldar, pero el más importante para las estructuras metálicas es el sistema de soldadura por fusión. En las soldaduras por fusión el calor proporcionado funde los extremos de las piezas y al solidificar se produce la unión.
Existen diferentes tipos de soldadura por fusión, pero los más utilizados son dos:
Soldadura autógena
        Soldadura por arco eléctrico, que es la que se utiliza en estructuras metálicas.


QUE ES EL DIAGRAMA


QUE ES EL  DIAGRAMA HIERRO CARBONO 


En el diagrama de equilibrio o de fases, Fe-C se representan las transformaciones que sufren los aceros al carbono con la temperatura, admitiendo que el calentamiento (o enfriamiento) de la mezcla se realiza muy lentamente de modo que los procesos de homogeneización tienen tiempo para completarse. Dicho diagrama se obtiene experimentalmente identificando los puntos críticos —temperaturas a las que se producen las sucesivas transformaciones— por métodos diversos.





FASES DIAGRAMA

Fase Austenítica (0 hasta 2,1% C)
La austenita es el constituyente más denso de los aceros y está formado por una solución sólida por inserción de carbono en hierro gamma, como lo muestra la Figura 5.3 La cantidad de carbono disuelto, varía de 0 a 2.1 % C que es la máxima solubilidad a la temperatura de 1130 °C.
La austenita presenta las siguientes características:
  • Baja temperatura de fusión.
  • Baja tenacidad.
  • Excelente soldabilidad.
  • No es magnética.
La austenita está formada por cristales cúbicos centrados en las caras estructura (FCC).

austenita

Figura 5.5  Microestructura interna de la austenita. [6]



Fase Ferrítica

Ferrita alfa α (0 hasta 0,022%C)
Es el nombre dado a la solución sólida α. Su estructura cristalina es BCC con una distancia interatómica de 2.86 Å. Prácticamente no disuelve en carbono, como se puede observar en la Figura 5.4, donde se tiene un acero con bajo porcentaje de carbono.
La máxima solubilidad es 0,022% de C a 727°C, y disuelve sólo 0,008% de C a temperatura ambiente.

Microestructura interna de la ferrita. [7]

Ferrita delta δ (0 hasta 0,09%C)
Se inicia a los 1400ºC y presenta una reducción en la distancia interatómica que la hace retornar a una estructura cristalina BCC. Su máxima solubilidad de carbono es 0.007% a 1487ºC. Las características de la ferrita δ son:
  • Muy blanda.
  • Estructura cristalina BCC
  • Es magnética.
  • Muy poca posibilidad de disolución del carbono.
La ferrita experimenta a 912°C una transformación polimórfica a austenita FCC o hierro γ. No posee una importancia industrial relevante. A partir de 1537ºC se inicia la fusión del Fe puro.
La ferrita δ es como la ferrita α, y sólo se diferencian en el tramo de temperaturas en el cual existen.

Fase Cementita (0,022% a 6,67%C)
Se forma cementita (Fe3C) cuando se excede el límite de solubilidad del carbono en ferrita α por debajo de 727°C (la composición está comprendida en la región de fases α+Fe3C). La cementita, desde el punto de vista mecánico, es dura y frágil, y su presencia aumenta considerablemente la resistencia de algunos aceros.
La cementita se presenta de forma oscura al ser observada al microscopio como se puede ver en la Figura 5.5, Estrictamente hablando, la cementita es sólo metaestable; esto es, permanece como compuesto a temperatura ambiente indefinidamente. Pero si se calienta entre 650 y 700°C durante varios años, cambia gradualmente o se transforma en hierro α y carbono, en forma de grafito, que permanece al enfriar hasta temperatura ambiente. Es decir, el diagrama de fases no está verdaderamente en equilibrio porque la cementita no es un compuesto estable. Sin embargo, teniendo en cuenta que la velocidad de descomposición de la cementita es extraordinariamente lenta, en la práctica todo el carbono del acero aparece como Fe3C en lugar de grafito y el diagrama de fases hierro-carburo de hierro es, en la práctica, válido.

Microestructura interna de la cementita[8]

Las zonas oscuras corresponde a cementita que es el mayor constituyente en la fundición blanca, las zonas claras corresponden a perlita
La cementita posee las siguientes propiedades:
  • Alta dureza.
  • Muy frágil.
  • Alta resistencia al desgaste.


Fase Ledeburita

La ledeburita no es un constituyente de los aceros, sino de las fundiciones. Se encuentra en las aleaciones Fe-C cuando el porcentaje de carbono en hierro aleado es superior al 25%, es decir, un contenido total de 1.76% de carbono.
La ledeburita se forma al enfriar una fundición líquida de carbono (de composición alrededor del 4.3% de C) desde 1130ºC, siendo estable hasta 723ºC, descomponiéndose a partir de esta temperatura en ferrita y cementita. Está formada por 52% de cementita y 48% de austenita. La ledeburita no existe a temperatura ambiente en las fundiciones ordinarias debido a que en el enfriamiento se transforma en cementita y perlita; sin embargo en las fundiciones se puede conocer las zonas donde existió la ledeburita por el aspecto eutéctico con que quedan las agrupaciones de perlita y cementita.

Microestructura interna de la ledeburita [8]

Fase Perlita
Es la mezcla eutectoide que contiene 0,77 % de C y se forma a 727°C a un enfriamiento muy lento. Es una mezcla muy fina, tipo placa o laminar de ferrita y cementita. Se le da este nombre porque tiene la apariencia de una perla al observarse microscópicamente a pocos aumentos.
Cuando esta estructura laminar es muy fina (las láminas son muy delgadas) la perlita se ve al microscopio óptico como negra. Sin embargo ambas fases, ferrita y cementita en condiciones normales de ataque son blancas. El color oscuro o negro lo producen el gran número de límites de grano existentes entre la matriz ferrítica y las láminas de cementita. Se comprende que cuanto más anchas sean las láminas (se habla entonces de perlita abierta o basta) la tonalidad se irá aclarando hasta poder distinguirse las distintas láminas, no por ello la perlita pierde su carácter de microconstituyente.
Hay dos tipos de perlita:
  • Perlita fina: dura y resistente.
  • Perlita gruesa: menos dura y más dúctil.
La perlita gruesa es más dúctil que la perlita fina a consecuencia de la mayor restricción de la perlita fina a la deformación plástica. Mecánicamente las perlitas tienen las propiedades intermedias entre la blanda y dúctil ferrita y la dura y quebradiza cementita.

Micro-estructura interna de la perlita [9]



Fase Grafito

Cuando las aleaciones hierro carbono, exceden el 2% de carbono se tiende a formar grafito, en la matriz de la aleación. Es especialmente cierto en la fundición gris, donde el grafito aparece en forma de escamas y es una característica predominante de la microestructura. En la Figura 5.8 se observa la una forma típica del grafito, la cual muestra la formación de este en forma de esferas.

Microestructura interna del grafito [8]

Es bastante duro, por lo que una cantidad elevada de grafito hace que la aleación sea muy dura pero a la vez, muy frágil, además los copos de grafito imparten una buena maquinabilidad actuando como rompe virutas, y también presentan una buena capacidad de amortiguación.